Towards Semantic KinectFusion
نویسندگان
چکیده
In this paper we propose an extension to the KinectFusion approach which enables both SLAM-graph optimization, usually required on large looping routes, as well as discovery of semantic information in the form of object detection and localization. Global optimization is achieved by incorporating the notion of keyframe into a KinectFusion-style approach, thus providing the system with the ability to explore large environments and maintain a globally consistent map. Moreover, we integrate into the system our recent object detection approach based on a new Semantic Bundle Adjustment paradigm, thereby achieving joint detection, tracking and mapping. Although our current implementation is not optimized for real-time operation, the principles and ideas set forth in this paper can be considered a relevant contribution towards a Semantic KinectFusion system.
منابع مشابه
DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks
3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of a scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recur...
متن کاملKintinuous: Spatially Extended KinectFusion
In this paper we present an extension to the KinectFusion algorithm that permits dense mesh-based mapping of extended scale environments in real-time. This is achieved through (i) altering the original algorithm such that the region of space being mapped by the KinectFusion algorithm can vary dynamically, (ii) extracting a dense point cloud from the regions that leave the KinectFusion volume du...
متن کاملMoving Volume KinectFusion
The recently reported KinectFusion algorithm uses the Kinect and GPU algorithms to simultaneously track the camera and build a dense scene reconstruction in real time. However, it is locked to a fixed volume in space and can not map surfaces that lie outside that volume. We present moving volume KinectFusion with additional algorithms to automatically translate and rotate the volume through spa...
متن کاملVolume-Based Semantic Labeling with Signed Distance Functions
Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to ...
متن کاملTowards constructing an Integrative, Multi-Level Model for Cognition: The Function of Semantic Networks
Integrated approaches try to connect different constructs in different theories and reinterpret them using a common conceptual framework. In this research, using the concept of processing levels, an integrated, three-level model of the cognitive systems has been proposed and evaluated. Processing levels are divided into three categories of Feature-Oriented, Semantic and Conceptual Level based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013